Custom Search

Wednesday, July 2, 2008

Emergent structures in nature


Emergent structures are patterns not created by a single event or rule. Nothing commands the system to form a pattern. Instead, the interaction of each part with its immediate surroundings causes a complex chain of processes leading to some order. One might conclude that emergent structures are more than the sum of their parts because the emergent order will not arise if the various parts are simply coexisting; the interaction of these parts is central. Emergent structures can be found in many natural phenomena, from the physical to the biological domain. For example, the shape of weather phenomena such as hurricanes are emergent structures.
It is useful to distinguish three forms of emergent structures. A first-order emergent structure occurs as a result of shape interactions (for example, hydrogen bonds in water molecules lead to surface tension). A Second-order emergent structure involves shape interactions played out sequentially over time (for example, changing atmospheric conditions as a snowflake falls to the ground build upon and alter its form). Finally, a third-order emergent structure is a consequence of shape, time, and heritable instructions. For example, an organism's genetic code sets boundary conditions on the interaction of biological systems in space and time.

[edit] Non-living, physical systems
In physics, emergence is used to describe a property, law, or phenomenon which occurs at macroscopic scales (in space or time) but not at microscopic scales, despite the fact that a macroscopic system can be viewed as a very large ensemble of microscopic systems.
An emergent property need not be more complicated than the underlying non-emergent properties which generate it. For instance, the laws of thermodynamics are remarkably simple, even if the laws which govern the interactions between component particles are complex. The term emergence in physics is thus used not to signify complexity, but rather to distinguish which laws and concepts apply to macroscopic scales, and which ones apply to microscopic scales.
Some examples include:
Colour: Elementary particles have no colour; it is only when they are arranged in atoms that they absorb or emit specific wavelengths of light and can thus be said to have a colour.
Friction: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in continuum mechanics such as viscosity, elasticity, tensile strength, etc.
Classical mechanics: The laws of classical mechanics can be said to emerge as a limiting case from the rules of quantum mechanics applied to large enough masses. This may be puzzling, because quantum mechanics is generally thought of as more complicated than classical mechanics.
Statistical mechanics was initially derived using the concept of a large enough ensemble that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order phase transitions such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems. Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
Patterned ground: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
Temperature is sometimes used as an example of an emergent macroscopic behaviour. In classical dynamics, a snapshot of the instantaneous momenta of a large number of particles at equilibrium is sufficient to find the average kinetic energy per degree of freedom which is proportional to the temperature. For a small number of particles the instantaneous momenta at a given time are not statistically sufficient to determine the temperature of the system. However, using the ergodic hypothesis, the temperature can still be obtained to arbitrary precision by further averaging the momenta over a long enough time.
Convection in a fluid or gas is another example of emergent macroscopic behaviour that makes sense only when considering differentials of temperature. Convection cells, particularly BĂ©nard cells, are an example of a self-organizing system (more specifically, a dissipative system) whose structure is determined both by the constraints of the system and by random perturbations: the possible realizations of the shape and size of the cells depends on the temperature gradient as well as the nature of the fluid and shape of the container, but which configurations are actually realized is due to random perturbations (thus these systems exhibit a form of symmetry breaking).
In some theories of particle physics, even such basic structures as mass, space, and time are viewed as emergent phenomena, arising from more fundamental concepts such as the Higgs boson or strings. In some interpretations of quantum mechanics, the perception of a deterministic reality, in which all objects have a definite position, momentum, and so forth, is actually an emergent phenomenon, with the true state of matter being described instead by a wavefunction which need not have a single position or momentum. Most of the laws of physics themselves as we experience them today appear to have emerged during the course of time making emergence the most fundamental principle in the universe and raising the question of what might be the most fundamental law of physics from which all others emerged. Chemistry can in turn be viewed as an emergent property of the laws of physics. Biology (including biological evolution) can be viewed as an emergent property of the laws of chemistry. Finally, psychology could at least theoretically be understood as an emergent property of neurobiological laws